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A simple non-empirical method for calculating electronic molecular states based on the 
description of excited states by mixing singly-excited configurations is presented. The complexity of 
the multiconfigurational wavefunctions is overcome by using the frozen-core approximation combined 
with natural orbital transformation. The method is tested on some low-lying excited states of the 
hydrogen molecule and is applied on Rydberg ns and npcr series of ethylene for n = 3, 4, 5, and 6. 
Transition energies, oscillator strengths and some other properties are computed. Internal consistency 
of the results and their agreement with available experimental data are good. 

Ein einfaches nicht-empirisches Verfahren ftir die Berechnung angeregter molekuiarer Zust~inde, 
das auf der Darstellung durch Linearkombinationen einfach angeregter Zustgnde beruht, wird vor- 
geschlagen. Die Komplexit~it des Mehrfach-Determinanten-Ansatzes wird dutch Verzicht auf die )kn- 
derung der Rumpfzust~inde und Transformation auf nattirliche Orbitale gemeistert. Testrechnungen 
fiir einige tiefliegende H2-Zust~inde und Rydbergzust~inde von A.thylen werden ausgeftihrt und Uber- 
gangsenergien, Oszillatorst~irken und anderes mehr berechnet. Konsistenz untereinander und Uber- 
einstimmung mit dem Experiment sind gut. 

Presentation d'une m6thode non empirique simple pour le calcul des 6tats 61ectroniques 
mol6culaires fond6e sur la description des 6tats excit6s par interaction de configurations mono- 
excit6es. La complexit6 des fonctions d'onde multiconfigurationelles est 6vit6e en utilisant l'approxi- 
mation du coeur fixe combin6e avec l'emploi des orbitales naturelles. La m6thode est 6prouv6e sur 
certains 6tats excit6s inf6rieurs de la mol6cule d'hydrog6ne et appliqu6e aux s6ries de Rydberg ns 

et n p o  de l'6thyl6ne pour n = 3, 4, 5 et 6. Calculs des 6nergies de transition, des forces oscillatrices et de 
quelques autres propri6t6s. La coh6rence interne des r6sultats et l'accord avec les donn6es exp6ri- 
mentales dispouibles sont bons. 

1. Introduction 

During the last decade non-empirical calculations on electronic states of 
molecules have steadily become more frequent and the quality of results from such 
calculations has considerably improved. Recently also excited electronic states 
have been successfully treated by such methods. One goal towards which various 
attempts have already been made is to develop methods yielding reliable results 
without requiring excessive computational effort or computer time. This goal 
forms one of the two aims of the present study. The other aim is to investigate 
the molecular Rydberg states of ethylene by applying our method to perform 
calculations on them. This kind of close investigation of the Rydberg states is 
one of many necessary steps to a better interpretation of the electronic spectra 
of various molecules. In particular, the calculation of both the excited state 
energies and the transition probabilities is required since both these quantities 
are used in making spectral assignments. 
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Sects. 2 and 3 are a brief outline of the theory, stressing a few points the 
principles of which are well understood although their applications on performing 
calculations of this kind seems to have been somewhat neglected. In Sect. 4 
our method of computation is presented in detail. In Sect. 5 an application to the 
hydrogen molecule is carried out in order to illuminate certain features of our 
method. Sect. 6 describes the application to the Rydberg states of ethylene. The 
results of the calculations are presented in Sect. 7. Finally we conclude in 
Sect. 8 with a ".commentary and evaluations of the present study and its 
relationship to similar work being done elsewheres. 

2. Theory 

As is well-known, the Hartree-Fock equations for a closed-shell system can 
be written 

F~p, = g,~Pr, (1) 
N 

F = H + Z (2aj - K j). (2) 
j = t  

As usual, H is the bare-nuclei one-electron operator, and Jj and K s are the 
Coulomb and exchange operators. Since F is Hermitian, the eigenfunctions {~r} 
will form a complete orthonormal set. As discussed in detail e.g. by Huzinaga and 
Arnau [1] this set can be divided into two subsets {~Vo} and {~vv}, representing 
the occupied and the virtual orbitals. {lpo } and {lpv} will span orthogonal sub- 
spaces of the complete Hilbert space spanned by {~Pr}" AS is well-known, the 
finite set {~Po} is adequate for construction of a Slater determinant 7Jo 
representing the ground state wavefunction 

% = sr v71 ~o2 . . . . .  CpN). (3) 

In principle {~v~} will be an infinite set. However, in practice the Eqs. (1) are 
solved by setting 

~Pr = Z Xucur (4) 

where {)~,} is ome suitably chosen finite basis set, # = 1, 2 . . . . .  M. Consequently, 
the subsets {~Pv} will now be reduced to ( M -  N) members. 

The simplest way of constructing an excited state wavefunction is to replace 
one of the ground state orbitals ~Pi, i C 0, by a virtual orbital ~Pm, m C v. The 
resulting wavefunction of the correct multiplicity may be denoted 7J(~Vi~pm). 
Usually this wavefunction is not entirely adequate for the description of an 
excited state, not even when the q~r's have emerged from a large basis SCF 
calculation. 

Various suggestions have been made to remedy this deficiency. One way 
is to keep to the method of replacement of a single orbital of ~o but to search for 
other virtual orbitals than those of Eq. (1), i.e. to make a transformation of the 
subspace {,pv} without changing the subspace {~Po}. 

To this end, various procedures have been suggested, e.g. by Hunt and 
Goddard [2] and by Huzinaga and Arnau [1]. However, these treatments 
imply orthogonality problems or rather lengthy and somewhat arbitrary 
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projection techniques. Another possibility is to carry out separate SCF calcula- 
tions for each excited state, see e.g. Buenker and Peyerimhoff [3]. These authors 
have combined the SCF procedures with extensive CI treatments. Their method 
may be the most adequate for special cases, but becomes very cumbersome when 
several excited states of the same symmetry are of interest and/or large molecules 
are considered. 

In the present study a rather simple method is presented, though obviously 
reasonably adequate for certain purposes. The method is a CI method which 
in the general case means that an excited state is described by combination 
of several configurations: 

~ = z ~ ' ( , ; ~ ; j  . . .  -- ,  ~ m . . . ) c L . ~  . . . .  (5)  

where the sum is extended over all possible combinations of occupied orbitals 
with virtual orbitals. However, in our method the frozen-core approximation has 
been adopted, i.e. only singly excited configurations are included and the sum 
is restricted to excitations from a specific occupied orbital t;~: 

(]_)a = 2 ~(1~i____~1~m ) C~m . (6) 
m 

The tpi's, i C 0, are eigenfunctions of the ground state Hartree-Fock operator F. 
Furthermore, all the ~m'S, m C v, also belong to this same set {~Pr}. 

The coefficients C~m are to be determined by a variational procedure. With 
the present choice of {hot} the matrix elements of the Hamiltonian are composed of 
~r's and two-electron integrals. There is no orthogonality problem and the 
calculation of transition probabilities is straightforward. However, an attempt 
to treat several kinds of excited states by use of the same expansion (4) will give 
rise to either poorly convergent series (6) or unwieldy calculations. 

A way out of this dilemma is to limit the interest to a certain class of 
excited states, e.g. the ns series of Rydberg states. The choice of {Z~} has to be 
made with particular reference to this class. Consequently, it may be possible to 
extend the basis sufficiently for a good description of this particular class, yet 
keeping the number (M - N) within reasonable limits. Thus, the clue is to choose 
the set {g,} to give a good representation of only a special subset {~vw} of the 
whole set of virtual orbitals {~Pv}. Then, the diagonalisation of the Hamiltonian 
matrix may provide adequate description of several excited states of the same 
symmetry. 

The adoption of a frozen core implies that the ionization potential can be 
obtained from Koopmans'  theorem within an approximation similar to that 
of the excitation energies. This expectation is reasonable since both reorganiza- 
tion and correlation are likely to be roughly the same in a Rydberg state as in the 
corresponding ionized state. 

Although the multiconfigurational wavefunctions (6) are not easily surveyable, 
a simplified interpretation of the excitation process can easily be regained by a 
transformation to natural orbitals (NO's) q~l [4, 5]. This can be achieved by 
diagonalization of the first-order density matrix in the ~o-space representation. 
Then, Eq. (6) can be written 

q~ -- Z q~(q~ ~ qS,~) B~m. (7) 
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Since the frozen-core approximation is used this diagonalization leads to N -  1 
doubly occupied NO's identical with the ground state occupied molecular orbitals 
~pj, j ~ i, and two singly occupied NO's one being identical with ~Pi, the other one 
being the orbital occupied in the excited state under consideration but not in the 
ground state. The values of the diagonal elements of the first order density matrix 
representation in the NO space satisfy the sufficient condition for q~ to be a 
single-configuration wavefunction, i.e. the sum in (7) is reduced to a single term. 

3. Rydberg States 

Molecular Rydberg states are commonly defined from the orbital point of 
view [6-8]. Using this model, a Rydberg state can be described by replacing one 
of the ground state orbitals by a molecular orbital, called Rydberg orbital, so 
large in size compared with the molecular core that it can be well described by the 
united atom (UA) model. Rydberg states fall into series such that the excitation 
energies, E,, fit the formula 

E ,  = E ( I P )  - R / ( n  - 6) 2 (8) 

where R is the Rydberg constant and 6 the quantum defect (a positive quantity 
that varies rather strongly with the azimuthal quantum number l of the UA 
orbital, but only slightly with the principal quantum number n). In (8), a singly- 
charged core has been assumed. E ( I P )  is the energy of ionisation (ionization 
potential). 

4. Computational Details 

In the present study the basis set (Zu) has been chosen as Gaussian Type 
Functions (GTF). From the primitive set a smaller set of Contracted Gaussian 
Type Functions (CGTF) has been obtained as described below. The SCF-MO 
wavefunctions and the electron repulsion integrals over the CGTF's have been 
computed with the IBMOL program version 4 [9] using the method described 
by Clementi and Davis [10]. The CI procedure involves the transformation of 
the two-electron integrals to the MO basis and construction and diagonalization 
of the Hamiltonian matrix. The symmetry of the system has been used 
extensively to bring down the number Of integrals to be computed and the size 
of the matrices to be diagonalized. The computations have been carried out for 
both singlet and triplet excited states. Dipole matrix elements have been com- 
puted by the method of Browne and Poshusta [11]. 

5. Applications to Hydrogen 

A test of the present method has been made by applying it to some 
lowlying excited states of the hydrogen molecule. The basis chosen in this case 
included ten GTF's of s-type with exponents optimized by Huzinaga [121, three 
GTF's of p-type and one of each of the types dxx, d~,y and dzz on each atom. 
No contraction was applied. 
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T a b l e  1. E n e r g y  d a t a  for  some  of  the lower  s ta tes  of the H z mo lecu le  wi th  g r o u n d  s ta te  
e q u i l i b r i u m  dis tance ,  R = 1.40 a.u.  

S ta te  T o t a l  energy ,  a .u.  Ver t i ca l  t r a n s i t i o n  ene rgy  f r o m  the g r o u n d  

state,  e.V. 

CI  S C F  A c c u r a t e  Single  CI  S C F  A c c u r a t e  
c o n f i g u r a t i o n  

X 1 Z ~  - 1.133595 - 1.133595 - 1.174442 a 

(g round)  
B 12~ - 0 . 6 6 5 4 5 6  - 0 . 6 9 9 6 9 3  - 0 . 7 0 3 7 4 4  a 13.43 12.73 11.81 12.81 a 
E 1Z~ - 0 . 6 2 2 8 9 3  - 0 . 6 8 1 2 5 4  a 13.27 13.08 13.42 a 
b3Zs ~ - 0 . 7 6 7 2 0 0  - 0 . 7 8 3 1 5 0  a 13.21 9.97 10.65 ~ 
a3S~ - 0 . 6 9 1 3 4 6  - 0 . 7 1 2 9 4  b 12.93 12.03 12.56 b 

+ 2  + H E ~ - 0 . 5 6 9 9 7 9  - 0 . 5 6 9 9 7 9  c 16.18 d 15.34 16.45 c 

Ref. [13] .  - b Ref. [14] .  - c Ref. [ 1 5 ] . -  d K o o p m a n s '  t h e o r e m  value .  

To compare the present CI method with the above-mentioned method in- 
cluding SCF calculations for excited states the Hartree-Fock equations were 
solved both for the ground state Xli20 + and for the lowest excited singlet 

i + B 12u- The total energy of the ground state was found to be -1.133595 a.u., 
cf. Table 1. According to Kolos and Roothaan [13] the Hartree-Fock limit is 
- 1.133630 a.u., 0.040812 a.u. (1.11 eV) above the accurate energy value [13], the 
difference being the correlation energy. For  the B 1t2,, + state we obtained an SCF 
energy of -0.699693 a.u. only 0.00405 a.u. (0.11 eV) above the accurate value. 
Our basis set was not particularly well adapted to describe this state which is a 
Rydberg state [16], since our lowest orbital exponent was 0.0285649 and more 
diffuse basis functions may be required for a good description. The correlation 
energy of this state is therefore surely smaller than 0.1 eV. This result is in strong 
support of the above-mentioned conjecture about equality of the correlation 
energy of a Rydberg state and the corresponding ionized state. 

Our CI method with fifteen singly excited configurations produced an energy 
value of -0.665456 a.u., cf. Table 1. The transformation to NO's showed that the 
state can be described as built from a ground state lsag orbital and a 2pa u NO. The 
latter orbital was found to be rather similar to the 2pau orbital, obtained from 
our SCF calculation. Since we have used the frozen-core approximation, the 
total energy difference between the results of the SCF and the CI calculations, 
0.034237 a.u. (0.9 eV), can be interpreted as reorganization energy. 

This value may be compared with the reorganisation energy of the H~- ion. 
Using Koopmans '  theorem, the orbital energy of the ground state, ~ = -0.594485, 
the correlation energy of this state and the accurate energy of the H~ ground 
state, the ionic reorganisation energy is found to be 0.030834 a.u. (0.84 eV). Thus, 
it is borne out that also the conjecture about the reorganisation energies is 
correct in this case. Moreover, it is noticeable that the change in correlation 
energy between the ground state and the excited state has almost the same value 
as the reorganisation energy so that these two quantities almost cancel. This 
cancellation is also obvious from the vertical transition energies, listed in Table 1, 
showing that the CI-values are very close to the accurate values, in particular 
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for the first excited singlet. A similar cancellation has been found also in other 
calculations of ionization potentials using Koopmans, theorem. 

Finally, vertical transition energies found from the single configuration 
description using ground state optimized MO's should be compared with the 
CI result, cf. Table 1. Obviously, this kind of single configuration is not entirely 
adequate for the description of excited states. As discussed by previous authors 
I-2, 3] some kind of improvement is called for. The present scheme for CI 
calculations seems to show one possibility for the desired improvement. 

6. Applications to Ethylene 

The electronic spectrum of ethylene is of great interest and has been studied 
both experimentally and theoretically by many authors. A comprehensive review 
of the literature until 1968 has been given by Merer and Mulliken [17]. Several 
new theoretical [18-21] and experimental [22,23] investigations have been 
reported in recent years. Most interest has been devoted to the valence excited T 
and V states and the lowest Rydberg states, while studies of higher Rydberg states 
have been more infrequent. The present investigation concerns two different 
Rydberg series, viz. the well-known ns series and a npa series, including states 
with n = 3, 4, 5, and 6. 

6.1. Basis Set  

The choice of suitable GTF's for the description of molecular Rydberg states 
is a rather complicated matter. Preliminary computations on ethylene with some 
different basis sets indicated that the basis functions actually can be separated 
into two subsets: 

1. Ground state (Normal state) basis functions, NGTF's, with exponents 
and contraction coefficients optimized in the usual way; 

2. Rydberg state basis functions, RGTF's. 
These two sets seem to be rather independent. Inclusion of the RGTF's 

has an insignificant effect both on the total energy of the ground state and on the 
orbital energies of the occupied orbitals. On the other hand, computations using 
quite different NGTF's but the same set of RGTF's display very small changes 
in the orbital energies of the lower virtual orbitals. The influence of the NGTF's 
on the Rydberg state energies E, of Eq. (8) appears almost solely in the values of ~i. 
Since the same ~i is responsible for the value of E( IP)  the values computed for the 
quantum defects are effectively independent of the NGTF's. A change of the 
RGTF's, however, was found to have a drastic effect on the energies of both 
virtual orbitals and Rydberg states. 

As a consequence, the choice of basis set was divided into two separate 
problems. The set of NGTF's was chosen as the ethylene-optimized basis set of 
Schulman et al. [24], including eight GTF's of s-type and four of p-type on each 
carbon atom and four GTF's of s-type on each hydrogen. All basis functions 
composing o--orbitals were contracted to a minimal basis set as given by 
Schulman et al. [24]. Since we aimed at a rather good description of the occupied 
re-orbital, only a four-to-two contraction was used for the 7r-type GTF's. 
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Table 2. RGTF's  for the ns and n p a  Rydberg series in ethylene 

Center Orbital exponent 

s-functions p-functions 

Carbon atoms 0.048708 a 0.028858 a 
0.019631 a 

Molecular midpoint 0.00791 0.01582 
0.00319 0.00638 
0.00129 0.00258 
0.00052 0.00104 

Hydrogen atoms 0.0413 a 

a Ref. [25]. 

The choice of a RGTF set is less straightforward. In a study of Rydberg states 
of the methyl radical McDiarmid [25] has reported orbital exponents suitable 
for two 3s-type and one 3p-type GTF on carbon and for one 2s-type GTF on 
hydrogen. Gaussians with still smaller exponents can hardly be centered on the 
carbons since this would cause so large overlap integrals that convergence of the 
SCF calculations might be prohibited. We therefore chose to center the most 
diffuse GTF's at the midpoint of the C-C bond. Refraining from the complicated 
procedure of optimizing the exponents of these functions we adopted the method 
of obtaining the exponents simply by division with a constant factor, starting 
with the most diffuse of the carbon 3s functions and using the ratio of the two 3s 
exponents as our constant. In this way we constructed four s-type GTF's. To get 
GTF's of pz-type (along the C-C bond) we multiplied the s-type exponents by 
two. The RGTF's thus obtained (eighteen) are listed in Table 2. A calculation of 
the radial distribution functions of these RGTF's indicated that this basis set 
should be adequate also for higher members of the Rydberg series. 

It should be stressed that the present set of RGTF's is chosen to be a 
subset {Xw} of the whole set {Zv} necessary to represent all kinds of virtual 
orbitals, cf. Sect. 2 above. Using this subset we cannot expect to obtain good 
results for all kinds of excited states, only for the Rydberg ns and npa series we 
had in mind making our choice of {Z~,}. For a study of e.g. the T and V states or 
other Rydberg series a different subset {Zw} must be constructed. 

6.2. Ground State SCF Calculation 

All the calculations on ethylene have been carried out with the ground state 
equilibrium geometry as given by Allen and Plyler [26]. With this geometry 
the ethylene molecule belongs to the point group Dzh. The coordinate system 
was chosen according to the recommendation by Mulliken [27], the molecule 
lying in the yz  plane with the CC and z axes collinear. The notations B1, B2, and B 3 
of the symmetry species are referred to this particular choice of axes. Then the 
ground state electronic configuration is (la0) 2 (lblu) 2 (2ao) 2 (2bl.) 2 ( lb2u) 2 (3ag) 2 
(lb30) 2 (lba.) 2. The first seven orbitals constitute the o--core while the lbau orbital 
is the carbon-carbon bonding g-orbital. 
14 Theoret. claim. Acta (Bed.) Vol. 27 
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Table 3. Orbital energies for some low-lying virtual orbitals of ethylene 

Orbital Orbital energy, a.u. 

4a o 0.00066 
5a o 0.00323 
6a o 0.01029 
7a o 0.02924 
8ag 0.08168 
9ag 0.09734 
3blu 0.00217 
4blu 0.00799 
5blu 0.02181 
6bl, 0.05153 

With our basis set of 74 GTF's, contracted to 34 CGTF's, the computation 
of the electron repulsion integrals with IBMOL4  was by far the most 
computer-time-consuming part of this study. The total energy obtained from 
the SCF treatment was -77.91451a.u. to be compared with the value 
-77.90830 obtained by Schulman et al. [24] with a basis set of NGTF's only 
and four-to-one contraction of all the p-functions. The Hartree-Fock energy of 
ethylene is close to the best value computed by Siegbahn [28], -78.062 a.u. 
The present values of the ei's of the occupied orbitals are very close to those of 
Schulman eta l .  [24]. The energy of the n-orbital, -0.3873 a.u. (10.54eV), is of 
particular interest since Koopmans'  theorem has been used in the discussion of 
the results for the Rydberg states. The experimental value of the vertical 
ionization potential reported by Eland [29] is 10.51 eV. 

The e-values found for the virtual orbitals are very low; as many as ten of 
them lie below 0.1 a.u. Some of the values are listed in Table 3. They are through- 
out lower than the corresponding values obtained by Buenker et al. [20] from 
their ground state SCF calculation to be used in a subsequent CI treatment. We 
do not expect these virtual orbitals to have any physical significance individually. 
Nevertheless, they may constitute an adequate subset {~Pw} for a CI description 
of certain excited states, cf. Sect. 2. 

6.3. Choice  o f  Configurat ions f o r  the CI Procedure 

According to the frozen-core approximation the configurations to be included 
in the CI treatment should be singly-excited and originating from a chosen 
occupied orbital ~Pi, cf. Eq. (6). In case of the present Rydberg series this occupied 
orbital should be the 7r-orbital. The computation is extremely fast. It requires 
less than one minute computer time on an IBM 360/75 computer for both the 
Rydberg series, singlets and triplets included. 

In the special case of ethylene other kinds of CI treatments are also feasible. 
One possibility would be to include all singly-excited configurations of ap- 
propriate symmetry, excluding only excitations from the carbon inner shells. 
Such an approach would allow for some reorganization, the amount of which 
being strongly basis set dependent. Also a partly valence character of the excited 
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states may be described in this way. The wavefunctions obtained will, however, 
be multiconfigurational both in the (MO) ~p-basis of Eq. (5) and in the (NO) 
~b-basis of Eq. (7). Natural orbitals may still be used for computation of one- 
electron properties, but the clearness of the model will be lost, at least partly. 
The interpretation of Eq. (8) will become obscured. Ionization potentials cannot 
be obtained in a consistent manner neither from Koopmans' theorem nor from 
SCF computations. 

For the sake of comparison, some Rydberg state energy calculations have 
been carried out by the more extended CI method. However, most of the results 
presented below refer to first method described above being the one we judge 
suitable for future development and applications. 

7. Results 

7.1. B3, States - ns Rydberg Series 

Excitations from the occupied re-orbital to a virtual o--orbital and belonging 
to the B3u species are of the type lb3 ,~mao,  with m = 4, 5 . . . . .  12. Excitations from 
an occupied o--orbital to a virtual ~-orbital belonging to the same species and 
included in the extended CI treatment are 2ao-*2b3u, 3ao--.2b3, , 2b1 ,~  lb2o and 
2blu~ 2b2o" 

The energies obtained for the five lowest Rydberg singlets and triplets and 
the singlet-triplet splittings are summarized in Table 4, which also displays 
experimental data for the singlets [30, 31]. Results from the frozen-core ap- 
proximation (nine configurations) as well as results from an extended CI treat- 
ment (thirteen configurations) are given. It is seen that the extension to o - ~ r  
excitations has an almost negligible effect on the energy values. The agreement 
between calculated and experimental values is rather good, which seems to con- 
firm the expectation that correlation and reorganization energies should almost 
cancel for Rydberg states. The somewhat inferior agreement for the first member 
of the series may be due to some valence character of this state. 

The singlet-triplet splittings are small for all the states and in particular for 
the higher ones. This may be interpreted as a result of the very small differential 
overlap between the occupied 1r-orbital and the very diffuse Rydberg NO's of 
these states. 

Table 4. Some lower B a u states of ethylene 

Frozen core CI Experimental Extended CI 

Vertical transition Singlet- Oscillator 04) transition Vertical transition 
energies, eV ' triplet strength of energies, eV energies, eV 

splitting singlet 
Singlet Triplet eV Singlet Triplet 

7.523 7.376 0.157 0.045 7.11 ~ 7.522 7.363 
9.090 9.025 0.065 0.022 8.90 b 9.089 9.020 
9.404 9.377 0.027 0.003 - -  9.403 9.376 
9.770 9.758 0.012 0.003 9.62 b 9.770 9.757 

10.049 10.026 0.023 0.004 9.95 ~ 10.048 10.021 

a Ref. [30]. b Ref. [31]. 

14" 
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1 2 ~  12 

k i g a 10 12 i 4 6 8 12 
Z ,  a .u. z , a . u .  (a) (b) 

Fig. 1. Charge density contours for (a) 3s natural orbital and (b) corresponding 4ag MO obtained from 
the open shell SCF calculation 

To compare the present method with other possible methods we have carried 
out a restricted Hartree-Fock open shell calculation for the lowest 1B3, state 
using the' same basis set as described above. The total energy was found to be 
6.734 eV above the ground state energy. As could be anticipated, this energy 
difference is too small since reorganization but not correlation is taken into 
account by this kind of SCF method. An interesting result of this calculation is 
that the 4ag orbital obtained by the SCF method is very similar to the Rydberg 
4a o orbital obtained by a very different procedure, viz. by the transformation to 
natural orbitals of the CI result for the lowest 1B3u state. Charge density contours 
in the molecular plane of these two differently computed 4a o orbitals are presented 
in Fig. 1. 

Table4  also includes the computed oscillator strengths of the 1Ao~1B3, 
transitions which are fully ~tllowed. No experimental values of the oscillator 
strengths are available. It is not very helpful to quote the experimental intensity 
values since the Rydberg transitions are found in the same region as a strong 
absorption continuum. Nevertheless, the experimental values strongly indicate 
that the intensity is considerably larger for the first members of the series than 
for the higher ones in good accord with the calculated values. 

The (n - 6) 2 values listed in Table 5 were found for all singlets by use of Eq. (8). 
The necessary value of the ionization potential, E(IP), was calculated from 
Koopmans '  theorem to be 10.539 eV. As discussed above the use of this theorem 
is consistent with our method of finding the energy values E, of the Rydberg 
states. In order to obtain quantum defects 6 which are reasonably constant within 
the series and of proper magnitude for Rydberg states of ns type the third state 
with (n - 6) 2 = 12.0 must be excluded. Still, the composition of the CI vector of 
the third state does not immediately call for an exclusion. The motivation is 
however easily provided by inspection of the natural orbitals. The NO's of this 
state indicate that it should be interpreted as originating from arc ~ 4da transi- 
tion. The Rydberg NO is mainly a 3p~ - 3p= orbital. Its charge density contours 
in the molecular plane are presented in Fig. 2. It is easily seen that the orbital has a 
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Table 5. Properties of Rydberg natural orbitals found for some of the lower 1B3u states of ethylene 

(n - 6) 2 R y d b e r g  Quantum rma x of the 
natural defect outermost 
orbital loop, a.u. 

Expectation values of second 
moment components, a.u. 
<x=> <y=> <z~> 

4.51 3s 0.88 5.7 18.18 21.29 14.89 
9.40 4s 0.93 8.3 59.12 59.25 74.07 

12.00 (4d ~r) (0.54) - -  47.86 47.89 62.47 
17.72 5s 0.79 25.5 267.2 266.8 264.9 
27.8 6s 0.7 42 740 740 739 

| 

2 Z, 6 8 10 12 
z, au. 

Fig. 2. Charge density contours for the natural Rydberg orbital of the third 1B3, state 

clear d character. The presence of a transition of this type is by no means surprising 
and has actually been reported by Buenker et al. [20]. 

The present description of this state is however rather poor since our choice 
of the subset {;gw} was made with the ns and n p e  Rydberg orbitals in mind and 
not n d e  orbitals. 

The assignments of the Rydberg orbitals and their quantum defects are listed 
in Table 5. In accord with Merer and Mulliken [17] we assume the lowest Rydberg 
ns orbital to be the 3s orbital. This assignment is at variance with the interpretation 
of Buenker et al. [20] who argue that this orbital must be the 4s since they assume 
all the three ground state occupied a o orbitals to be united-atom s orbitals. Merer 
and Mulliken [ 17] on the other hand assumed the 3a 0 orbital to be the united-atom 
3de orbital. This latter assignment is strongly supported by our results. In Fig. 3 
the charge density contours for the 3ag orbital are displayed�9 This picture is very 
similar to the one for the hag MO obtained by Buenker et al. [20] and assigned as 
united-atom de by themselves. 
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1 2 3 4 
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Fig. 3. Charge density contours for the 3 a  o orbital 
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_4 ~ , x , , "  ~s 

-4. 6s 

-6. 

10 20 30 40 50 
Z,a.U. 

.9 
- 4  

Fig. 4. Logarithm of charge density vs .  distance from the molecular midpoint along the z-axis 
(C-C axis) for n s  natural orbitals 

The charge densities of the Rydberg natural orbitals of n s  type have been 
computed along the z-axis and are presented in Fig. 4. We have chosen to plot 
the logarithm of the density since we wanted to display the whole range of interest 
including all the loops. It should be mentioned that the curves have been obtained 
by computing ~p*~p at rather arbitrarily chosen points so that neither the maxima 
nor the minima are very accurate. A rough estimate of the z-value, corresponding 
to the maximum of the outermost loop and called rmax, is given in Table 5. Ac- 
cording to Mulliken [6] this rm, ~ should be related to the effective quantum 
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number: r m a x ~ ( n - - ~ )  2. This relation holds moderately well for the first two 
orbitals but not so well for the highest ones. The outermost loop is found well 
outside the molecular core even for the 3s orbital. The 4s NO seems to have one 
loop missing, but an additional loop was observed on an analogous curve along 
the y-axis. The spherical symmetry of the 3s and 4s orbitals is somewhat distorted, 
as could be anticipated. This is clearly shown by the expectation values (xZ), 
(y2), and (z 2) listed in Table 5. The 5s and 6s orbitals are however very closely 
spherical. They are also very diffuse. It should be noted that all the ns NO's were 
found to be C - H  antibonding in agreement with the maintainance of Merer and 
Mulliken [17]. 

7.2. B2g S ta t e s -  npa Rydberg Series 

Excitations from the occupied n-orbital to a virtual a-orbital and belonging 
to the Bjg species are of the type l b a , ~ m b l ,  with m = 3 ,  4 . . . .  ,12. Excitations 
from an occupied a-orbital to a virtual n-orbital belonging to the same species 
and included in the extended CI treatment are 2a o - l b 2 g  , 2ao~2b2g , 3ao-+ lb2o , 
3ag~2b2g, and 261,~263,.  The energies obtained for the four lowest singlets 
and the corresponding triplets are presented in Table 6 together with the singlet- 
triplet splittings. Results from the frozen-core approximation (ten configurations) 
as well as from an extended CI treatment (fifteen configurations) are given. Also for 
this series the extension to a ~ n excitations has a negligible effect. No experimental 
data are available since the 1A9~ 1B2g transitions are dipole forbidden. Also in 
this case a restricted SCF open shell calculation was carried out for the lowest 
state of the series. The total energy was found to be 7.374 eV above the ground 
state energy. With the same argument as above this energy difference is pre- 
sumably too small. A comparison of the SCF 3pa orbital with the Rydberg NO 
orbital again shows large similarity between the two counterparts, cf. Fig. 5. 
The values of the singlet-triplet splitting, given in Table 6, seem to be reasonable 
for all the states. 

Some properties of the npa natural orbitals are presented in Table 7. The 
quantum defects are quite constant and of proper magnitude for a Rydberg 
series of p-type. The values of r . . . .  found from the densities displayed in Fig. 6, 
fit in with Mulliken's relation slightly better than in the ns series. 

Table 6. Some lower B 2 g states of ethylene 

Frozen core CI 

Vertical transition 
energies, eV 

Singlet Triplet 

Extended CI 

Singlet- Vertical transition 
triplet energies, eV 
splitting eV Singlet Triplet 

8.224 8.153 0.079 8.222 8.143 
9.406 9.381 0.025 9.405 9.375 
9.864 9.851 0.013 9.863 9.852 

10.098 10.088 0.010 10.096 10.087 
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2 ~ 6 8 lo 12 2 4 6 s lO ~2 
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(a) (b) 
Fig. 5. Charge density contours for (a) 3pa natural orbital and (b) corresponding 3bl, MO obtained 

from the open shell SCF calculation 

Table 7. Properties of some Rydberg npcr natural orbitals in ethylene singlets 

(n - 6)~ Principal Quantum rm~ ~ for 
quantum defect outermost 
number loop, a.u. 
n 

Expectation values of second 
moment components, a.u. 

(x 2> <y2> <z 2> 

5.88 3 0.58 5.9 
12.01 4 0.53 15.2 
20.16 5 0.51 27.5 
30.9 6 0.4 43 

14.56 16.06 46.79 
67.60 67.65 203.52 

197.5 197.4 592.7 
332 331 995 

-4 ~ 3po 
-6, 

-4 ~ 4p~ 

5po 
-6- ~ 

6pa 

- 6 -  

lb 2o 30 4b 50 
z ,a .u .  

q 

-4 

Fig. 6. Logarithm of charge density vs. distance from the molecular midpoint along the z-axis 
(C-C axis) for npcr natural orbitals 
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It should be noted that the number of nodes in this series is in complete 
agreement with the assignments of principal quantum numbers provided that 
all the density minima indicated in Fig. 6 do represent nodes. The expectation 
values (x2), (y2), and (z 2) show that the orbitals are very nearly ellipsoids of 
revolution. Further, it was found that also all the npa orbitals are C-H anti- 
bonding. 

8. Discussion 

The present study has been carried out in search for an excited state treatment, 
intermediate between very elaborate methods, such as the combined SCF and CI 
method [3], and drastically simplified methods, such as pseudopotential methods 
[32]. The drawback of the elaborate methods is that long experience and great 
care is needed in order to treat all states considered at equal levels of accuracy, 
including equal amounts of correlation, etc. Further, even if the principles of 
the treatment have been disentangled, the application to large systems will easily 
give rise to an unwieldy complexity. Also, liberal access to a large computer is a 
necessary pre-requisite for using such a method. Moreover, even the most extended 
(and costly) treatments have hitherto given only limited physical information. 

At present, the most interesting results concerning excited Rydberg states 
seem to have emerged from the opposite kind of approach, viz. from the use of 
model potentials. As an example, Betts and McKoy [32] have presented calcula- 
tions including sizable series of term values for both diatomic and polyatomic 
molecules, apparently in excellent agreement with experiments, using a one- 
particle model with a drastically simplified potential. Their results are indeed very 
encouraging. However, even their approach has certain drawbacks. Singlet and 
triplet states ought to be treated separately. A more serious deficiency is that the 
handling of the potential from hydrogen atoms seems to be rather casual. In its 
present form the method is seemingly unable to distinguish between Rydberg 
states of e.g. ethane and acetylene. 

The present method is non-empirical and the application to any system is 
straightforward. Some consideration must be given to the choice of basis functions, 
but this part of the procedure can easily be handled after some more experience 
of various systems. More serious may be the necessity to carry out an SCF calcula- 
tion for the ground state with the chosen basis set. However, the present rapid 
development of efficient programs may be helpful in this respect. Since the single 
necessary SCF calculation is by far the most computer-time-consuming part of the 
procedure, the whole calculation may hopefully become a rather modest operation, 
even for comparatively large molecules. In view of the completely non-empirical 
character of the method, the results obtained so far are rather promising. Both 
energies, transition probabilities, description of orbitals and other properties 
seem to come out with very reasonable values. Furthermore, the method is very 
flexible since it is easy to modify the accuracy in keeping with the actual need by 
extension or contraction of the basis set. 

In conclusion, the present method seems to offer a useful alternative for studies 
of molecular excited states. Further applications are currently being performed in 
our Laboratories and will be published in the near future. 



212 I. Fischer-Hjalmars and J. Kowalewski: Excited State Calculations 

Acknowledgments. We are indebted to Dr. Bjiirn Roos and Mr. Per Siegbahn for valuable dis- 
cussions and information about unpublished results and to Mrs. Janina Kowalewska for drawing the 
figures. One of us (J.K.) gratefully acknowledges support from Professor Ragnar Vestin. 

References 

1. Huzinaga, S., Arnau, C.: Physic. Rev. A 1, 1285 (1970); J. chem. Physics 54, 1948 (1971). 
2. Hunt, W.J., Goddard III, W.A.: Chem. Physics Letters 3, 414 (1969). 
3. Buenker, R.J., Peyerimhoff, S. D. : J. chem. Physics 53, 1368 (1970). 
4. L6wdin, P.-O. : Physic. Rev. 97, 1474 (1955). 
5. Fischer-Hjalmars, I.: Trans. International Syrup. Mol. Structure and Spectroscopy, B205 (1962). 
6. Mulliken, R.S.: J. Amer. chem. Soc. 86, 3183 (1964). 
7. Mulliken, R.S.: J. Amer. chem. Soc. 88, 1849 (1966). 
8. Mulliken, R.S.: J. Amer. chem. Soc. 91, 4615 (1969). 
9. Veillard, A.: IBMOL Version 4, Special IBM Technical Report, San Jos6 (1968). 

10. Clementi, E., Davis, D.R.: J. comput. Physics 2, 223 (1967). 
11. Browne, J.C., Poshusta, R.O.: J. chem. Physics 36, 1933 (1962). 
12. Huzinaga, S.: J. chem. Physics 42, 1293 (1965). 
13. Kolos, W., Roothaan, C. C. J. : Rev. mod. Physics 32, 219 (1960). 
14. Wakefield, C.B., Davidson, E.R.: J. chem. Physics 43, 834 (1965)i 
15. Bates, D.R., Ledsham, K., Stewart, A.L.: Philos. Trans. Roy. Soc. (London) A246, 215 (1953). 
16. Herzberg, G.: Molecular spectra and molecular structure, Vol. I. Spectra of diatomic molecules, 

2nd Ed. Princeton, N. J.: Van Nostrand 1950. 
17. Merer, A.J., Mulliken, R.S.: Chem. Reviews 69, 639 (1969). 
18. Dunning Jr.,T.H., Hunt, W.J., Goddard III, W.A.: Chem. Physics Letters 4, 147 (1969). 
19. Basch, H., McKoy, W.: J. chem. Physics 53, 1628 (1970). 
20. Buenker, R.J., Peyerimhoff, S.D., Kammer, W. E.: J. chem. Physics 55, 814 (1971). 
21. Buenker, R.J., Peyerimhoff, S.D., Hsu, H.L.: Chem. Physics Letters 11, 65 (1971). 
22. Merer, A.J., Schoonveld, L.: Canad. J. Physics 47, 1731 (1969). 
23. Hubin-Franskin, M.J., Collin,J. E.: Int. J. Mass Spectrom. Ion Physics 5, 163 (1970). 
24. Schulman, J.M., Hornback, C.J., Moskowitz, J.W.: Chem. Physics Letters 8, 361 (1971). 
25. McDiarmid,R.: Theoret. chim. Acta (Berl.) 20, 282 (1971). 
26. Allen, H. C., Plyler, E. K.: J. Amer. chem. Soc. 80, 2673 (1958). 
27. Mulliken, R.S.: J. chem. Physics 23, 1997 (1955). 
28. Siegbahn, P.: Private Communication. 
29. Eland, J.H.D.: Int. J. Mass Spectrom. Ion Physics 2, 471 (1969). 
30. Price, W. C., Tutte, W. T.: Proc. Roy. Soc. (London) A 174, 207 (1940). 
31. Wilkinson, P. G.: Canad. J. Physics 34, 643 (1956). 
32. Betts, T., McKoy, V.: J. chem. Physics 54, 113 (1971). 

Prof. I. Fischer-Hjalmars 
Institute of Theoretical Physics 
University of Stockholm 
Vanadisv~igen 9 
S-113 46 Stockholm 
Sweden 


